Inizio della pagina -
Logo DISCO
|
Visita la Versione ad elevata leggibilità
|
Vai al Contenuto della pagina
|
Vai alla Fine dei contenuti
|
Vai al Menu Principale
|
Vai alla Barra di navigazione (sei in)
|
Vai al Menu di navigazione (albero)
|
Vai alla Lista dei comandi
|
Vai alla Lista degli approfondimenti
|
Vai al Menu inferiore
|
Logo Ateneo
   
Didattica
Matematica discreta (complementi)

Docente: L. De Michele, Previtali

Crediti: 6

Programma:

  • Numeri Complessi

    Numeri complessi, parte reale e parte immaginaria, forma cartesiana, forma polare, modulo, argomento, l'esponenziale complesso, elevamento a potenza, formula di De Moivre, estrazione di radice.

  • Matrici

    Definizione di matrici, somma, prodotto per scalari, prodotto righe per colonne, traccia, sottomatrici, matrici triangolari, diagonali, trasposizione, matrici simmetriche, permutazioni e segno, determinante, minori complementari, complemento algebrico, Teorema di Laplace, Teorema di Binet, condizioni di non singolarita' per una matrice, matrice inversa e suo calcolo, determinante e volumi, proprietà del determinante, matrici ortogonali, vettori ortonormali.

  • Spazi vettoriali

    Definizione, struttura algebrica, esempi: polinomi e prodotti cartesiani di campi, matrici rettangolari, lo spazio canonico, sottospazi, intersezione e somma, somma diretta, Formula di Grassmann, combinazioni lineari, caratterizzazione dei sottospazi, chiusura lineare, sistemi di generatori, matrici elementari, vettori standard, spazio dele righe e/o delle colonne, indipendenza lineare, criteri per la dipendenza lineare, basi, caratterizzazione delle basi, esempi, dimensione, rango di una matrice: varie definizioni, calcolo del rango, Teorema di Kronecker, matrici orlate.

  • Sistemi lineari

    Definizione ed esempi, sistemi omogenei, traduzione matriciale, Teorema di Rouché-Capelli, metodi risolutivi, regola di Cramer, spazio delle soluzioni di un sistema e del sistema omogeneo associato.

  • Applicazioni lineari

    Definizione, nucleo, immagine e loro proprietà, Teorema nullità + rango, esistenza ed unicità di applicazioni lineari, estensione lineare, iniettività, matrici associate, cambiamenti di base.

  • Similitudine e diagonalizzabilità

    Definizione, relazioni di equivalenza, diagonalizzabilità, invarianti di classi di similitudine, polinomio caratteristico,interpretazione di alcuni dei suoi coefficienti, autovalori e autovettori, estensione del campo, autospazi, indipendenza tra autovettori, molteplicità algebrica e geometrica, spettro, regolarità di autovalori, criteri di diagonalizzabilità, Teorema di Cayley-Hamilton.

Per ulteriori informazioni sul corso rivolgersi direttamente ai docenti.

Approfondimenti

Google Translate
Translate to English Translate to French Translate to German Translate to Spanish Translate to Chinese Translate to Portuguese Translate to Arabic
Translate to Albanian Translate to Bulgarian Translate to Croatian Translate to Czech Translate to Danish Translate to Dutch Translate to Finnish Translate to Greek Translate to Hindi
Translate to Hungarian Translate to Irish Translate to Japanese Translate to Korean Translate to Norwegian Translate to Polish Translate to Romanian Translate to Russian Translate to Serbian
Translate to Slovenian Translate to Swedish Translate to Thai Translate to Turkish

(C) Copyright 2016 - Dipartimento Informatica Sistemistica e Comunicazione - Viale Sarca, 336
20126 Milano - Edificio U14
redazioneweb@disco.unimib.it - ultimo aggiornamento di questa pagina 25/03/2011